Associations of Underweight, Overweight and Obesity with Self-care History in the Youth

Mostafa Sadeghi¹, Mohammadreza Farzadmehr², Morteza Abbasi², Yalda Khodadadi³, Atefeh Sadeghi⁴, Najmeh Sepahie⁵, Alireza Nodehi⁶

1. Department of Biostatistics & Epidemiology, Faculty of Health, Tabriz University of Medical Science, Tabriz, Iran
2. Behvans Training Center, Torbat Heydariyah University of Medical Sciences, Torbat Heydariyah, Iran
3. Gorgan Health-Care Center, Golestan University of Medical Sciences, Gorgan, Iran
4. 9-Day Hospital, Torbat Heydariyah University of Medical Sciences, Torbat Heydariyah, Iran.
5. Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Science, Mashhad, Iran
6. Aqqala Health-Care Center, Golestan University of Medical Sciences, Gorgan, Iran

Introduction: The adverse effects of underweight, overweight, and obesity on health could increase the risk of chronic, non-communicable diseases and disability among the youth. Self-care plays a pivotal role in lifestyle management. The present study aimed to evaluate the associations of underweight, overweight, and obesity with self-care history in the youth.

Methods: This descriptive, cross-sectional study was conducted on 1,140 young participants aged 18-29 years in Aqqala city, located in the north of Iran. Data were collected using the self-care measuring scale, which is commonly applied by the Iranian Ministry of Health. A case-control study had been designed in which the participants with normal weight were considered as controls, and the underweight, overweight, and obese subjects were considered as the case groups to evaluate the associations with self-care history.

Results: The prevalence of obesity, overweight, normal weight, and underweight among the youth was estimated at 8.8%, 23.6%, 58.4%, and 9.2%, respectively. The frequency of self-care history based on the self-care measuring scale was considered to be inadequate, moderate, and favorable in 2.4%, 69.3%, and 28.3% of the participants, respectively. A significant association was observed between underweight and self-care history (OR: 4.46; 95%CI: 1.54-12.20; P<0.001). In addition, factors such as gender (P=0.001), education level (P=0.002), marital status (P=0.001), and self-care history (P=0.038) had significant correlations with the weight classifications in the participants.

Conclusion: According to the results, the underweight individuals had an inadequate self-care history and were at a higher risk of diseases. Therefore, they required proper planning for self-care.

Keywords: Underweight, Overweight, Obesity, Self-care, Youth

Please cite this paper as:

* Corresponding author: Alireza Nodehi, Aqqala Health-Care Center, Golestan University of Medical Sciences, Gorgan, Iran. Tel: 00981734529248; Email: Alireza.nodehi57@gmail.com
© 2019 mums.ac.ir All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
normal (18.5–24.9kg/m²), overweight (25–29.9kg/m²), and obese (≥30kg/m²).

The overweight and obesity epidemic in the United States is alarming due to the imposed burden on health, quality of life, and economy. According to the Centers for Disease Control and Prevention (CDC), 35.9% of adults are obese, and 33.3% are overweight (7). The prevalence of obesity and overweight has increased in most developed countries, as well as the neighboring countries of the Persian Gulf, especially Iran (8). According to the statistics reported by the World Health Organization (WHO), the prevalence of obesity is 19.4% in Iran. Obesity has been reported to be more prevalent among women (26.4%) compared to men (12.4%). Furthermore, the WHO has announced that two-thirds of the deaths caused by non-communicable diseases and obesity is a major risk factor for cardiovascular diseases and cancers (9). Obesity is a major risk factor for various diseases, including type II diabetes mellitus, hypertension, cardiovascular diseases, stroke, osteoarthritis, and cancer (10).

Underweight in adolescents and the youth is considered to be a great health concern in different communities, especially developing countries (11). Underweight, overweight, and obese individuals are at a higher risk of health complications. In addition, underweight individuals are at a higher risk of mortality compared to those with an average BMI (12).

In health care, self-care is defined as the deliberate, self-initiated human monitoring activities to control the health status (13). Self-care is part of daily life and could be extended to children, family, neighbors, friends, and local communities. As a pillar of health and social care, the concept of self-care indicates that an essential element of the modern healthcare system is under proper supervision (14). According to statistics, 65-85% of healthcare is performed by the individual and their family without the involvement of expertise based on traditional, non-medical approaches (15). In a study conducted in Iran, the majority of the subjects were reported to be interested in self-care despite their lack of knowledge and effective performance regarding self-care (16).

In several cases, the improved quality of life of patients with weight problems has been the result of clinical outcomes. Capable patients feel that they can positively influence their disease outcomes, especially in the cases with chronic diseases. In this regard, self-care training could remarkably enhance their quality of life.

The present study aimed to evaluate the associations of underweight, overweight, and obesity with self-care history in the youth.

Material and methods

Participants, Setting, and Sampling

This descriptive, cross-sectional study was conducted on 1,140 participants aged 18-29 years in Aqqala city, located in the north of Iran, in 2015. The sample size was estimated at 972 subjects based on the research objectives and odds ratio (OR) of 1.53 between obesity and marital status (18) (α=0.05; \(P_2=0.5 \)) using the G power software. Considering the sample loss of 15%, the final sample size was determined to be 1,140 participants. The inclusion criteria of the study were residence in the selected study area, age of 18-29 years, and willingness to participate. The subjects were selected via cluster sampling, and their socioeconomic status was also considered in sampling. Initially, each urban and rural healthcare center was considered as a cluster. Afterwards, the numbers of the household records were collected using systematic random methods. Finally, a young individual was selected via simple random sampling from each household. Data were collected by trained interviewers.

Research Measures

Data were collected using the self-care measuring scale, which is an instrument commonly utilized by the Iranian Ministry of Health and consists of two sections. The first section included demographic data (e.g., age, gender, marital status, and education level), and the second section consisted of 73 items to measure the self-care scale in four dimensions of physical health (11 items), mental and behavioral health (18 items), communication health (21 items), and social health (23 items). These items were scored based on a four-point Likert scale (Never=1, Often=2, Usual=3, Always=4). The total score of the self-care scale was calculated out of 292 based on the obtained scores in the mentioned dimensions and
classified into three self-care categories of inadequate, moderate, and favorable self-care (Table 1).

Table 1. Results of Self-care Scale Analysis

<table>
<thead>
<tr>
<th>Score</th>
<th>Status</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-162</td>
<td>Inadequate</td>
<td>At risk; requiring proper self-care planning</td>
</tr>
<tr>
<td>163-227</td>
<td>Moderate</td>
<td>Still healthy; requiring the reconsideration of thoughts and behaviors</td>
</tr>
<tr>
<td>228-292</td>
<td>Favorable</td>
<td>Acceptable; favorable overall health status and self-care level</td>
</tr>
</tbody>
</table>

Anthropometric Measurements

The self-care scale had two items regarding height and weight to measure the BMI of the participants. The anthropometric measurements were performed at the healthcare center using various methods. Body weight was measured to the nearest 0.1 kilogram (Weight Medisana), and height was measured to the nearest 0.5 centimeter using a wall-hanging height for an adult (Saka 206) with light clothing and without shoes.

After data collection, the frequency of underweight, overweight, and obesity was determined in each age group. The results of each measurement were expressed as the mean value of two consecutive measurements. A case-control study was designed to survey the relevance of the measured values to self-care history based on the BMI of the subjects. The subjects with normal weight were considered as controls, and the other weight groups (underweight, overweight, and obese) were considered as the case groups. Each case group was assessed independently and compared with the control group on three self-care levels.

- Control group (normal weigh): BMI=18.5-24.9 kg/m²; n=660 (57.9%)
- Case group one (underweight): BMI<18.5 kg/m²; n=112 (9.8%)
- Case group two (overweight): BMI=25-29.9 kg/m²; n=270 (23.7%)
- Case group three (obese): BMI≥30 kg/m²; n=98 (8.6%)

Ethical Considerations

The study protocol was approved by the regional Ethics Committee of Tabriz University of Medical Sciences (ethical registration number: IR.TBZMED.REC.2015.646). Verbal informed consent was obtained from all the participants prior to the study.

Statistical Analysis

Data analysis was performed in STATA software version 13, and the obtained data were expressed as mean and standard deviation to assess the quantitative and qualitative variables, respectively. Chi-square was used to assess the correlations between the self-care history and BMI, and the OR of two variables was calculated. In all the statistical analyses, the significance level was considered at 0.05.

Results

Socio-demographic characteristics

In total, 1,140 participants (407 males; 36.58%) with the mean age of 24.75±3.05 years (age range: 18-29 years) were enrolled in the study. The education level in the majority of the subjects was high school diploma and below diploma, while 203 subjects (17.81%) had academic education. In addition, the majority of the participants (74.56%) were residents of rural areas, and 825 subjects (72.37%) were married.

Status of BMI and Independent Variables

Table 2 shows the independent variables, including gender, marital status, education level, place of residence, employment status, smoking habits, and self-care history, in the case groups based on the results of Chi-square. Significant correlations were observed between gender (P=0.001), marital status (P=0.001), education level (P=0.002), and self-care history (P=0.038) and body weight in the case groups.
Table 2. Socio-demographic Variables Correlated with Body Mass Index (BMI)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Underweight (N, %)</th>
<th>Normal Weight (N, %)</th>
<th>Overweight (N, %)</th>
<th>Obese (N, %)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>43 (10.6)</td>
<td>263 (64.6)</td>
<td>80 (19.7)</td>
<td>21 (5.1)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>69 (9.4)</td>
<td>397 (54.2)</td>
<td>190 (25.9)</td>
<td>77 (10.5)</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Single</td>
<td>54 (17.1)</td>
<td>201 (63.8)</td>
<td>39 (12.4)</td>
<td>21 (6.7)</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>58 (7.1)</td>
<td>459 (55.6)</td>
<td>231 (28)</td>
<td>77 (9.3)</td>
</tr>
<tr>
<td>Education Level</td>
<td>Below Diploma</td>
<td>54 (9.1)</td>
<td>317 (53.2)</td>
<td>160 (26.8)</td>
<td>65 (10.9)</td>
</tr>
<tr>
<td></td>
<td>High School Diploma</td>
<td>47 (13.8)</td>
<td>213 (62.5)</td>
<td>59 (17.3)</td>
<td>22 (6.4)</td>
</tr>
<tr>
<td></td>
<td>Above Diploma</td>
<td>11 (5.4)</td>
<td>130 (64.1)</td>
<td>51 (25.1)</td>
<td>11 (5.4)</td>
</tr>
<tr>
<td>Place of Residence</td>
<td>Urban</td>
<td>21 (7.2)</td>
<td>169 (58.3)</td>
<td>79 (27.3)</td>
<td>21 (7.2)</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>91 (10.2)</td>
<td>491 (57.8)</td>
<td>191 (22.4)</td>
<td>77 (9.6)</td>
</tr>
<tr>
<td>Employment Status</td>
<td>Employed</td>
<td>24 (7.8)</td>
<td>181 (58.8)</td>
<td>80 (25.9)</td>
<td>23 (7.5)</td>
</tr>
<tr>
<td></td>
<td>Unemployed</td>
<td>88 (10.6)</td>
<td>479 (57.6)</td>
<td>190 (22.8)</td>
<td>75 (9)</td>
</tr>
<tr>
<td>Smoking Habits</td>
<td>Smoker</td>
<td>15 (15.3)</td>
<td>55 (56.1)</td>
<td>23 (23.5)</td>
<td>5 (5.1)</td>
</tr>
<tr>
<td></td>
<td>Non-smoker</td>
<td>97 (9.3)</td>
<td>605 (58.1)</td>
<td>247 (23.7)</td>
<td>93 (8.9)</td>
</tr>
<tr>
<td>Self-care History</td>
<td>Inadequate</td>
<td>19 (51.5)</td>
<td>12 (32.3)</td>
<td>3 (8.1)</td>
<td>3 (18.1)</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>79 (9.9)</td>
<td>466 (58.3)</td>
<td>185 (23.2)</td>
<td>69 (8.6)</td>
</tr>
<tr>
<td></td>
<td>Favorable</td>
<td>14 (4.6)</td>
<td>182 (59.9)</td>
<td>82 (26.9)</td>
<td>26 (8.6)</td>
</tr>
</tbody>
</table>

Note.*Gender, marital status, education level, and self-care history had significant correlations with case groups based on Chi-square.

Status of BMI and Self-care History

The prevalence of obesity was estimated at 8.8%, 23.6%, 58.4%, and 9.2% in the obese, overweight, normal, and underweight subjects. The self-care history based on the self-care scale was determined to be inadequate, moderate, and favorable in 2.4%, 69.3%, and 28.3% of the participants.

Table 3 shows the analysis of the association between underweight and self-care history. Considering that self-care differences were observed between the underweight and normal subjects, a significant difference was only observed in the case of inadequate self-care history (OR: 4.46, 95%CI: 1.54-12.20; P<0.001).

Table 4 shows the analysis of the association between overweight and self-care history. A difference was observed in self-care history between the overweight and normal subjects, while no significant difference was denoted between overweight and self-care history (P>0.05).

Table 5 shows the analysis of the association between obesity and self-care history. A
difference was observed in self-care history between the obese and normal subjects, while no significant difference was denoted between obesity and self-care history (P>0.05).

Table 5. OR of Factors Associated with Obesity and Self-care History

<table>
<thead>
<tr>
<th>Self-care History</th>
<th>With Self-care N (%)</th>
<th>Without Self-care N (%)</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate</td>
<td>Normal 12 (1.8)</td>
<td>648 (98.2)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obese 3 (3.1)</td>
<td>95 (96.9)</td>
<td>1.673 (0.920-3.004)</td>
<td>0.426</td>
</tr>
<tr>
<td>Moderate</td>
<td>Normal 466 (70.6)</td>
<td>194 (29.4)</td>
<td>1.00 (reference)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obese 69 (70.4)</td>
<td>29 (29.6)</td>
<td>0.961 (0.594-1.582)</td>
<td>0.867</td>
</tr>
<tr>
<td>Favorable</td>
<td>Normal 182 (27.6)</td>
<td>478 (72.4)</td>
<td>1.00 (Reference)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obese 26 (26.5)</td>
<td>72 (73.5)</td>
<td>0.981 (0.585-1.606)</td>
<td>0.937</td>
</tr>
</tbody>
</table>

Discussion

The present study aimed to assess the associations between underweight, overweight, and obesity with self-care history among the youth. The findings showed a significant correlation between underweight and self-care history (OR: 4.46, 95%CI: 1.53-12.20; P<0.001). Therefore, it could be inferred that the subjects with inadequate self-care history were more likely to be classified as the group with the BMI of less than 18.5 kg/m² (underweight). On the other hand, no significant differences were observed between obesity and overweight with self-care history.

In the current research, significant correlations were denoted between gender, marital status, education level, and self-care history in the case groups, while no significant differences were observed between the place of residence, employment status, and smoking habits in the case groups.

In the present study, the prevalence of obesity, overweight, normal weight, and underweight was estimated at 8.8%, 23.6%, 58.4%, and 9.2%, respectively. Most of the review studies conducted in Iran in this regard have investigated the prevalence of obesity in various age groups. In the present study, we aimed to evaluate the associations of underweight, overweight, and obesity with self-care history independently.

According to the study by Barzin et al., a significant number of young males aged 8-25 years in the urban population were overweight (32.2%) and obese (9.5%). Although this rate is remarkably lower compared to the American or Arab youth in the eastern Mediterranean region, it is similar to the rate reported in European youth of the same age group (17). This finding is also similar to the prevalence rate of obesity and overweight estimated in the present study.

Another research in this regard was conducted by Eftekhar et al. to review cognitive information, public health satisfaction, self-care preventive factors, and self-care information resources in a population aged more than 15 years. In the mentioned study, the researchers concluded that 82% of the subjects were satisfied with their health status within the past six months, 55% claimed to have no knowledge of self-care, 82% were interested in self-care, and 86% claimed that they were active in self-care. Therefore, it could be inferred that the majority of the individuals who are interested in self-care claim to have no knowledge of self-care, which in turn results in their improper performance in this regard (16). In the present study, 97.6% of the participants had an acceptable self-care history, and the difference (11.6%) could be due to the fact that our research was conducted on the youth living in rural areas.

The findings of the current research are in congruence with the results obtained by Serahati et al., which demonstrated a significant correlation between age and gender with various weight groups (obesity) (18). On the other hand, Vosoughi et al. have reported that the rate of self-care was moderate (61.4%), and the relatively low rate of self-care qualities in the present study could be attributed to the illiteracy of the sample population. Furthermore, factors such as age, gender, and marital status were considered to be the predictive factors for self-care (19).

According to the results of a quantitative study performed by Amiri et al., the main barriers against lifestyle improvement were not only satisfaction with the body, self-positive impression, and no sense of threat from obesity in adolescents and youth, but they also imagined that obesity could strongly prevent diseases
Such a mindset could be considered an important cause of no correlation between overweight, obesity, and self-care history.

Limitations of the Study

The foremost limitation of the study was that the number of the male and female respondents who completed the questionnaire was not equal since men were not at home at the time of completing the questionnaire, which in turn led to gender imbalance. Another limitation was the high rate of illiteracy and lack of knowledge regarding self-care behaviors among the studied youth. In addition, we used the common tool utilized by the Iranian Ministry of Health for data collection, and the instrument could not be modified based on the age group of the participants.

Conclusion

According to the results, there was a significant association between underweight and self-care in the youth, while no significant differences were observed between obesity, overweight, and self-care history. Moreover, significant correlations were observed between gender, marital status, education level, and self-care history in the case groups. The underweight subjects had an inadequate self-care history and were at a higher risk of diseases; therefore, they were in need of proper planning for self-care.

Acknowledgments

This article was extracted from a master’s thesis in epidemiology conducted at the Department of Biostatistics and Epidemiology at Tabriz University of Medical Sciences, Iran. Hereby, we extend our gratitude to the manager and staff of the healthcare center in Aqqa the in Golestan province, Iran for assisting us in this research project.

Conflict of interest

None declared.

References