The Gut Microbiota and Probiotics in Celiac Disease

Document Type : Review Article

Authors

1 Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

2 Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Abstract

Celiac disease (CD) is an immune-mediated enteropathy that occurs in genetically predisposed individuals associated with gluten intake. Currently, the only effective treatment for CD is life-lasting elimination of gluten from the diet, but adhering to it throughout life is burdensome. In addition, strict compliance with a gluten-free diet (GFD) does not lead to a complete restoration of intestinal microbiota. Although gluten is known to be a trigger in CD, various studies have demonstrated that the gut microbiota is involved in gluten metabolism, regulation of intestinal barrier permeability, and modulation of the immune response. Therefore, the gut microbiota has an important role in the pathogenesis, progression, and clinical manifestations of CD. This evidence supports the hypothesis that probiotics act as a strategy to modulate the intestinal microbiota into an anti-inflammatory state. Probiotics such as some bacterial species of the genera Bifidobacterium and Lactobacillus can protect the epithelial cells from gliadin-induced damage and improve symptoms and quality of life in GFD-treated patients, as an adjunctive treatment. This narrative review aims to discuss the recent scientific evidence of the relationship between the intestinal microbiota changes in CD and to understand the role of probiotics in CD treatment.

Keywords


1.Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823-36. e2.
2.Mohammadibakhsh R, Sohrabi R, Salemi M, Mirghaed MT, Behzadifar M. Celiac disease in Iran: a systematic review and meta-analysis. Electron physician. 2017;9(3):3883.
3.Husby S, Koletzko S, Korponay-Szabó I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr. 2020;70(1):141-56.
4.Fernandez A, Gonzalez L, De-la-Fuente J. Coeliac disease: clinical features in adult populations. Rev Esp Enferm Dig. 2010;102(8):466-71.
5.Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, et al. Celiac disease: a comprehensive current review. BMC med. 2019;17(1):1-20.
6.Barone M, Della Valle N, Rosania R, Facciorusso A, Trotta A, Cantatore FP, et al. A comparison of the nutritional status between adult celiac patients on a long-term, strictly gluten-free diet and healthy subjects. Eur J Clin Nutr. 2016;70(1):23-7.
7.Kumar J, Kumar M, Pandey R, Chauhan NS. Physiopathology and management of gluten‐induced celiac disease. J food sci. 2017;82(2):270-7.
8.Högberg L, Grodzinsky E, Stenhammar L. Better dietary compliance in patients with coeliac disease diagnosed in early childhood. Scand j gastroenterol. 2003;38(7):751-4.
9.Coqueiro A, Bonvini A, Tirapegui J, Rogero M. Probiotics supplementation as an alternative method for celiac disease treatment. Int J Probiotics Prebiotics. 2017;12(1).
10.Kerry RG, Patra JK, Gouda S, Park Y, Shin H-S, Das G. Benefaction of probiotics for human health: A review. J food drug anal. 2018;26(3):927-39.
11.Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol. 2013;16(2):221-7.
12.Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm bowel dis. 2013;19(5):934-41.
13.de Sousa Moraes LF, Grzeskowiak LM, de Sales Teixeira TF, Peluzio MdCG. Intestinal microbiota and probiotics in celiac disease. Clin microbiol rev. 2014;27(3):482-9.
14.Krishnareddy S. The microbiome in celiac disease. Gastroenterol Clin. 2019;48(1):115-26.
15.Olivares M, Neef A, Castillejo G, De Palma G, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64(3):406-17.
16.Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Eng J Med. 2014;371(14):1295-303.
17.Neu J, Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin perinatol. 2011;38(2):321-31.
18.Francavilla R, Cristofori F, Tripaldi ME, Indrio F. Intervention for dysbiosis in children born by C-section. Ann Nutr Metab. 2018;73(3):33-9.
19.Adlercreutz EH, Wingren CJ, Vincente RP, Merlo J, Agardh D. Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta paediatr. 2015;104(2):178-84.
20.Sander SD, Andersen A-MN, Murray JA, Karlstad Ø, Husby S, Størdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterol. 2019;156(8):2217-29.
21.Kołodziej M, Patro-Gołąb B, Gieruszczak-Białek D, Skórka A, Pieścik-Lech M, Baron R, et al. Association between early life (prenatal and postnatal) antibiotic administration and coeliac disease: a systematic review. Arch dis child. 2019;104(11):1083-9.
22.Caminero A, Meisel M, Jabri B, Verdu EF. Mechanisms by which gut microorganisms influence food sensitivities. Nat Rev Gastroenterol Hepatol. 2019;16(1):7-18.
23.Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterol. 2016;151(4):670-83.
24.Heyman M, Abed J, Lebreton C, Cerf-Bensussan N. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012;61(9):1355-64.
25.Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue barriers. 2016;4(4):e1251384.
26.Vorobjova T, Raikkerus H, Kadaja L, Talja I, Uibo O, Heilman K, et al. Circulating zonulin correlates with density of enteroviruses and tolerogenic dendritic cells in the small bowel mucosa of celiac disease patients. Dig dis sci. 2017;62(2):358-71.
27.Hooper L, Littman D, Macpherson A. MP Program, Interactions between the microbiota and the immune system. Sci.1268-73.
28.Serena G, Yan S, Camhi S, Patel S, Lima R, Sapone A, et al. Proinflammatory cytokine interferon‐γ and microbiome‐derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol. 2017;187(3):490-506.
29.Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP, Constante M, et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat commun. 2019;10(1):1-14.
30.Smecuol E, Hwang HJ, Sugai E, Corso L, Chernavsky AC, Bellavite FP, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J clin gastroenterol. 2013;47(2):139-47.
31.Joint FAO/WHO. Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria: Cordoba, Argentina, 1–4 October 2001  [Available from: http://isappscience.org/wp-content/uploads/2015/12/FAO-WHO-2001-Probiotics-Report.pdf
32.Salazar N, Gueimonde M, Hernández-Barranco AM, Ruas-Madiedo P, Clara G. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl environ microbiol. 2008;74(15):4737-45.
33.Papista C, Gerakopoulos V, Kourelis A, Sounidaki M, Kontana A, Berthelot L, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab invest. 2012;92(4):625-35.
34.Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm. 2008;5(1):1-13.
35.Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J cell biochem. 2010;109(4):801-7.
36.Zeng J, LI YQ, ZUO XL, ZHEN YB, Yang J, LIU CH. Clinical trial: effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea‐predominant irritable bowel syndrome. Aliment pharmacol ther. 2008;28(8):994-1002.
37.Seth A, Yan F, Polk DB, Rao R. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G1060-G9.
38.Lindfors K, Blomqvist T, Juuti‐Uusitalo K, Stenman S, Venäläinen J, Mäki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152(3):552-8.
39.Orlando A, Linsalata M, Notarnicola M, Tutino V, Russo F. Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines. BMC microbiol. 2014;14(1):19.
40.Giorgi A, Cerrone R, Capobianco D, Filardo S, Mancini P, Zanni F, et al. A probiotic preparation hydrolyzes gliadin and protects intestinal cells from the toxicity of pro-inflammatory peptides. Nutrients. 2020;12(2):495.
41.Olivares M, Laparra M, Sanz Y. Oral administration of Bifidobacterium longum CECT 7347 modulates jejunal proteome in an in vivo gliadin-induced enteropathy animal model. J proteomics. 2012;77:310-20.
42.McCarville J, Dong J, Caminero A, Bermudez-Brito M, Jury J, Murray JA, et al. A commensal Bifidobacterium longum strain prevents gluten-related immunopathology in mice through expression of a serine protease inhibitor. Appl environ microbiol. 2017;83(19).
43.De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC microbiol. 2010;10(1):1-7.
44.Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br j nutr. 2014;112(1):30-40.
45.Lorenzo Pisarello MJ, Vintiñi EO, González SN, Pagani F, Medina MS. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Can j microbiol. 2015;61(1):32-7.
46.Klemenak M, Dolinšek J, Langerholc T, Di Gioia D, Mičetić-Turk D. Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Dig dis sci. 2015;60(11):3386-92.
47.Harnett J, Myers SP, Rolfe M. Probiotics and the microbiome in celiac disease: a randomised controlled trial. Evid Based Complement Altern Med. 2016;2016.
48.Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D’Auria G, Martinez-Priego L, et al. Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients. 2016;8(10):660.
49.Pinto-Sanchez MI, Smecuol EC, Temprano MP, Sugai E, González A, Moreno ML, et al. Bifidobacterium infantis NLS super strain reduces the expression of α-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J Clin Gastroenterol. 2017;51(9):814-7.
50.MARTINELLO F, ROMAN CF, SOUZA PAd. Effects of probiotic intake on intestinal bifidobacteria of celiac patients. Arq Gastroenterol. 2017;54(2):85-90.
51. Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, et al. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. J clin gastroenterol. 2019;53(3):e117.
52. Primec M, Klemenak M, Di Gioia D, Aloisio I, Cionci NB, Quagliariello A, et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin nutr. 2019;38(3):1373-81.
53. Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11(8):1925.
54. Uusitalo U, Andren Aronsson C, Liu X, Kurppa K, Yang J, Liu E, et al. Early probiotic supplementation and the risk of celiac disease in children at genetic risk. Nutrients. 2019;11(8):1790.
55. Smecuol E, Temprano P, Costa A, Sugai E, Moreno ML, Sanchez MIP, et al. 599–Effect of Bifidobacterium Infantis Nsl Super Strain in Highly Symptomatic Celiac Disease Patients on Long-Term Glutenfree Diet. A Pilot Study. Gastroenterol. 2019;156(6):S-119.