The Effect of Fasting on Positron Emission Tomography (PET) Imaging

Document Type : Review Article

Authors

medical physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

As a nuclear approach, Positron Emission Tomography (PET) is a functional imaging technique which is based on the detection of gamma ray pairs emitted by a positron-emitting radionuclide. There are certain limitations to this technique such as normal tissue uptake. Therefore, it has been recommended that patients prepare before scanning. Fasting for a short while before PET imaging is an example of such preparation.
In this paper, we attempted to collect the studies evaluating the effects of fasting in the three sections of cardiac, brain and abdominal PET imaging. Conclusively, we found that the effects of fasting on PET imaging can be different depending on the type of PET scanning, radiotracer, patient’s diseases, fasting duration and in case of any additional dietary plans. It is proposed that further study be conducted on this subject in order to determine such effects in more detail.

Keywords


  1. Berry JJ, Baker JA, Pieper KS, Hanson MW, Hoffman JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 1991;32(8):1518-25.
  2. Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. Journal of Nuclear Medicine. 2004;45(5):797-801.
  3. Phelps ME. PET: molecular imaging and its biological applications: Springer; 2004.
  4. Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography: Springer; 2005.
  5. Bar-Shalom R, Valdivia AY, Blaufox MD, editors. PET imaging in oncology. Seminars in nuclear medicine; 2000: Elsevier.
  6. Das BK. Positron Emission Tomography. Springer; 2015.
  7. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. Journal of Nuclear Medicine. 2012;53(11):1716-22.
  8. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103-10.
  9. Townsend D. Physical principles and technology of clinical PET imaging. Annals-Academy of Medicine Singapore. 2004;33(2):133-45.
  10. Bailey DL, Karp JS, Surti S. Physics and instrumentation in PET.  Positron emission tomography: Springer; 2005. p. 13-39.
  11. Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial (18)F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Research. 2014;4:1-.
  12. Kumar P, Patel CD, Singla S, Malhotra A. Effect of duration of fasting and diet on the myocardial uptake of F-18-2-fluoro-2-deoxyglucose (F-18 FDG) at rest. Indian journal of nuclear medicine: IJNM: the official journal of the Society of Nuclear Medicine, India. 2014;29(3):140.
  13. Kobayashi Y, Kumita S-i, Fukushima Y, Ishihara K, Suda M, Sakurai M. Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. Journal of Cardiology. 2013;62(5):314-9.
  14. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16(5):801-10.
  15. Thut DP, Ahmed R, Kane M, Djekidel M. Variability in myocardial metabolism on serial tumor (18)F-FDG PET/CT scans. American Journal of Nuclear Medicine and Molecular Imaging. 2014;4(4):346-53.
  16. Gropler RJ, Siegel BA, Lee KJ, Moerlein SM, Perry DJ, Bergmann SR, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 1990;31(11):1749-56.
  17. Camici P, Ferrannini E, Opie L. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Progress in cardiovascular diseases. 1989;32(3):217-38.
  18. Kumar P, Patel CD, Singla S, Malhotra A. Effect of duration of fasting and diet on the myocardial uptake of F-18-2-fluoro-2-deoxyglucose (F-18 FDG) at rest. Indian Journal of Nuclear Medicine : IJNM : The Official Journal of the Society of Nuclear Medicine, India. 2014;29(3):140-5.
  19. Zincirkeser S, Şahin E, Halac M, Sager S. Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. Journal of international medical research. 2007;35(2):231-6.
  20. Lum DP, Wandell S, Ko J, Coel MN. Reduction of Myocardial 2-Deoxy-2-[18F]Fluoro- D-Glucose Uptake Artifacts in Positron Emission Tomography Using Dietary Carbohydrate Restriction. Molecular Imaging & Biology. 2002;4(3):232-7.
  21. de Groot M, Meeuwis AW, Kok PM, Corstens FM, Oyen WG. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur J Nucl Med Mol Imaging. 2005;32(1):98-101.
  22. Kaneta T, Hakamatsuka T, Takanami K, Yamada T, Takase K, Sato A, et al. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med. 2006;20(3):203-8.
  23. Cheng V, Slomka P, Ahlen M, Thomson LJ, Waxman A, Berman D. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol. 2010;17(2):286-91.
  24. Brancato S, Arrighi J. Fasting FDG PET compared to MPI SPECT in cardiac sarcoidosis. J Nucl Cardiol. 2011;18(2):371-4.
  25. Liistro T, Guiducci L, Burchielli S, Panetta D, Belcari N, Pardini S, et al. Brain glucose overexposure and lack of acute metabolic flexibility in obesity and type 2 diabetes: a PET-[ 18F] FDG study in Zucker and ZDF rats. Journal of Cerebral Blood Flow & Metabolism. 2010;30(5):895-9.
  26. Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The Role of Insulin in Human Brain Glucose Metabolism An 18Fluoro-Deoxyglucose Positron Emission Tomography Study. Diabetes. 2002;51(12):3384-90.
  27. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G, et al. Fasting biases brain reward systems towards high‐calorie foods. European Journal of Neuroscience. 2009;30(8):1625-35.
  28. Bouteldja N, Andersen LT, Møller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: A review. Metabolism. 2014;63(11):1375-84.
  29. Bentourkia Mh, Tremblay S, Pifferi F, Rousseau J, Lecomte R, Cunnane S. PET study of 11C-acetoacetate kinetics in rat brain during dietary treatments affecting ketosis. American Journal of Physiology-Endocrinology and Metabolism. 2009;296(4):E796-E801.
  30. Wu C-X, Zhu Z-H. Diagnosis and evaluation of gastric cancer by positron emission tomography. World journal of gastroenterology: WJG. 2014;20(16):4574.
  31. Zhu Z, Li F, Mao Y, Cheng W, Cheng X, Dang Y. Improving evaluation of primary gastric malignancies by distending the stomach with milk immediately before 18F-FDG PET scanning. Journal of nuclear medicine technology. 2008;36(1):25-9.
  32. Kolthammer JA, Corn DJ, Tenley N, Wu C, Tian H, Wang Y, et al. PET imaging of hepatocellular carcinoma with 18F-fluoroethylcholine and 11C-choline. Eur J Nucl Med Mol Imaging. 2011;38(7):1248-56.
  33. Ma Q, Xin J, Zhao Z, Guo Q, Yu S, Xu W, et al. Value of< sup> 18 F-FDG PET/CT in the diagnosis of primary gastric cancer via stomach distension. European journal of radiology. 2013;82(6):e302-e6.
  34. Zhu Z, Li F, Zhuang H. Gastric distension by ingesting food is useful in the evaluation of primary gastric cancer by FDG PET. Clinical nuclear medicine. 2007;32(2):106-9.
  35. Kim EY, Lee WJ, Choi D, Lee SJ, Choi JY, Kim B-T, et al. The value of PET/CT for preoperative staging of advanced gastric cancer: comparison with contrast-enhanced CT. European journal of radiology. 2011;79(2):183-8.
  36. Hwang KH, Choi D-J, Lee S-Y, Lee MK, Choe W. Evaluation of patients with hepatocellular carcinomas using [11C]acetate and [18F]FDG PET/CT: A preliminary study. Applied Radiation and Isotopes. 2009;67(7–8):1195-8.
  37. Lin W-Y, Tsai S-C, Hung G-U. Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nuclear Medicine Communications. 2005;26(4):315-21.
  38. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. Journal of Hepatology. 2000;32(5):792-7.
  39. Ho C-L, Simon C, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. Journal of Nuclear Medicine. 2003;44(2):213-21.
  40. Tenley N, Corn DJ, Yuan L, Lee Z. The effect of fasting on PET Imaging of Hepatocellular Carcinoma. Journal of cancer therapy. 2013;4(2):561.