Evaluation of Milk Consumption after Resistance Training on the Glycemic Control and Irisin Levels of Type II Diabetic Men: A Quasi-experimental Study

Mojtaba Sayadi Omam1, Mark Elisabeth Theodorus Willems2, Mohsen Ebrahimi3*

1. MSc student of Exercise Physiology, Semnan University, Iran.
2. Professor of Exercise Physiology, University of Chichester, United Kingdom.
3. Assistant Professor of Exercise Physiology, Semnan University, Iran.

Article Info

Article type: Research Paper

Article History:
- Received: 16 Sep 2020
- Accepted: 27 Nov 2020
- Published: 05 May 2021

Keywords:
- Milk
- Resistance training
- Irisin
- Insulin resistance
- Type II diabetes
- Fasting blood glucose

Abstract

Introduction: The consumption of high-protein foods after resistance training increases training achievement, which may benefit diabetic patients. The present study aimed to investigate the effects of milk consumption after resistance training on the glycemic control and irisin levels of type II diabetic (T2D) men.

Methods: This quasi-experimental study was conducted on 36 male patients with T2D, mean age of 53.6±4.8 years and mean body mass index of 27.1±3.6 kg/m². The patients were randomly divided into three groups of control, resistance training (RT), and resistance training and milk consumption (RTM). Eight weeks of RT was performed in three sets of 12 maximum repetitions three days per week. The RTM group consumed 500 milliliters of low-fat milk after the exercise. Fasting blood glucose, insulin, HbA1c, irisin, weight, waist-to-hip ratio, muscle strength, and limb circumference were measured before and after the intervention. Data analysis was performed using repeated measures analysis of variance (ANOVA).

Results: Compared to the RT group, the leg strength (mean±95% CI: -49.80±31.53; P<0.001) arm circumference (mean±95% CI: -3.41±1.97; P<0.001), and thigh circumference (mean±95% CI: -5.16±2.98; P<0.001) improved significantly in the RTM group. However, no significant interaction effects were observed for the other variables between the RT and RTM groups.

Conclusion: Despite more improvement in the muscle strength and circumference, the beneficial effects of RT were not augmented by additional post-exercise milk consumption in the male patients with T2D.

Introduction

Regular physical activity and a healthy diet are beneficial strategies for the prevention and management of diabetes (1, 2). Various physical activities and exercises have been reported to be effective in this regard, including walking, running, yoga, aerobics, and resistance training (RT) (3-7). According to the literature, RT may positively influence glucose control and insulin resistance by improving muscle mitochondrial function and muscle volume (8). In addition, RT has been shown to increase the glucose uptake by the muscles through augmented muscle mass (9). On the other hand, protein intake in combination with RT could enhance RT-induced muscle gain (10). The consumption of approximately 20 grams of protein after a training session for the young and 40 grams for the elderly and middle-aged has been reported to maximize muscle protein synthesis (11). Furthermore, evidence suggests that milk consumption after RT could significantly increase the lean body mass in young healthy men and women (12, 13).

Considering that muscle loss is inevitable in diabetic patients (14), protein intake in combination with RT (or other types of training) could reinforce the beneficial effects of training in patients with type II diabetes (T2D), while no supporting evidence has been proposed in this regard. For instance, Wycherley et al. reported that a high-protein diet along with RT could improve weight loss and body composition without a significant change in the glycemic control (GC) of overweight and obese patients.
with T2D (15). In addition, the findings of Francois et al. demonstrated that post-exercise milk consumption cannot increase the GC benefits of high-intensity interval training (HIIT) in T2D patients (16). Previous findings have also indicated the non-significant effects of excess dietary protein with RT on the glucose tolerance and content of the insulin-signaling proteins of skeletal muscles in healthy elderly individuals (17). However, some studies have shown correlations between low-fat dairy consumption and the improvement of insulin resistance (18) and the risk of T2D (19). Recent findings have confirmed the association between irisin and insulin resistance in patients with T2D (20, 21). Furthermore, it has been suggested that irisin plays a pivotal role in glucose utilization and lipid metabolism in T2D through the regulation of the AMPK signaling pathway (22). Studies have also demonstrated that exercise training could increase irisin levels (23-25), and evidence attests to the association between irisin and fat-free mass (26). Due to the limited studies and contradictions of some of the findings in this regard, a comprehensive approach could not be found to determine the effects of post-exercise milk consumption on the indicators of T2D. The present study aimed to assess the effects of milk intake after RT sessions on the GC and irisin levels of T2D patients.

Materials and Methods

Subjects

Subjects were selected from the T2D patients referring to Ghazvin Diabetes Association, Iran. The sample population included 36 male patients within the age range of 45-60 years, who were invited and enrolled in the study. The inclusion criteria were as follows: 1) absence of diabetic complications (e.g., neuropathy, nephropathy, and retinopathy); 2) no insulin treatment; 3) no regular participation in sports activities and RT within the past six months; 4) no changes in the oral antiglycemic medications within the past two months; 5) no weight changes over 5% for a minimum of two months; 6) absence of extreme obesity (body mass index >40 kg/m²); 7) no use of hormonal medications or hormone therapy (e.g., thyroid) and 8) no alcohol consumption, smoking or drug abuse. The participants completed the health history questionnaire and provided written informed consent. The study protocol was approved by the Ethics Committee of Qazvin University of Medical Sciences (code: IR.QUMS.REC.1397.221). Eligible participants were selected and allocated to three groups of RT (n=12), resistance training with milk consumption (RTM) (n=12), and control (n=12).

RT Protocol

The training groups performed three sessions of resistance exercises per week for eight weeks under professional supervision. The RT program consisted of seven exercises, including bench press, leg press, shoulder press, abs crunch, seated cable rows, leg extension, and lat pull-down, which were carried out after 10 minutes of overall warm-up. The exercises were performed in three sets of 10-12 repetitions at 70-75% of 1RM every session (27). If the participants were able to complete more than 12 repetitions, the weights were increased in order to reduce the number of the repetitions to less than 12. The rest interval between the exercise sets was 30-60 seconds, and the duration of each training session was approximately 45 minutes. 1RM was measured before and after the training using an indirect method (28) for seven exercises, and the values were used for the setting of the exercise intensity. The waist-to-hip ratio (WHR) and limb circumference were also measured before and after the training program. The subjects in control group received no regular exercises during the protocol.

Diet and Supplementation

The subjects were asked to sustain their routine dietary habits during the study period. The RTM group consumed 500 milliliters of milk containing 1.5% fat (Pajan Co., Iran) immediately after each RT session. Medications at baseline and the changes throughout the study were recorded, and physicians were allowed to change the antidiabetic medications of the patients only if necessary to avoid hypoglycemia.

Blood Analysis

Blood samples were collected before and 48 hours after the training program in a fasting state (10 hours). Blood glucose, insulin, and HbA1c were measured using enzymatic, electrochemiluminescence, and chromatography methods, respectively. In addition, the ELISA human kit (Zellbio GmbH
Company) was utilized for the measurement of irisin.

Statistical Analysis

Data analysis was performed in SPSS version 24.0 (SPSS Inc., Chicago, Illinois) using the Shapiro-Wilk test to assess the normality of the data distribution for each variable. In addition, repeated measures analysis of variance (ANOVA) was applied for the intergroup assessment, and the differences between the variables were considered significant at the P-value of less than 0.05.

Table 1. Anthropometrics, Muscle Strength, Limb circumference, and Diabetes indicators before and after eight weeks in Control, Resistance Training and Resistance Training & Milk Groups.

<table>
<thead>
<tr>
<th></th>
<th>Con (n=12)</th>
<th>RT (n=12)</th>
<th>RTM (n=12)</th>
<th>Time P-value</th>
<th>Interaction P-value</th>
<th>RT&RTM Interaction P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>54.5±4.9</td>
<td>53.8±5.1</td>
<td>52.6±4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.74±0.05</td>
<td>1.72±0.04</td>
<td>1.72±0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>pre 81.2±11.5</td>
<td>83.1±14.6</td>
<td>81.0±10.5</td>
<td>0.923</td>
<td>0.792</td>
<td>0.630</td>
</tr>
<tr>
<td>BMl (Kg/m²)</td>
<td>post 81.4±11.5</td>
<td>82.9±13.5</td>
<td>81.2±10.7</td>
<td>0.750</td>
<td>0.974</td>
<td>0.872</td>
</tr>
<tr>
<td>WHR</td>
<td>pre 1.00±0.08</td>
<td>0.99±0.06</td>
<td>1.01±0.04</td>
<td>0.025<sup>a</sup></td>
<td>0.028<sup>b</sup></td>
<td>0.110</td>
</tr>
<tr>
<td>Muscle Strength (Kg)</td>
<td></td>
<td></td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td>0.663</td>
</tr>
<tr>
<td>1RM Chest</td>
<td>pre 18.6±6.5</td>
<td>21.8±1.5</td>
<td>24.8±2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1RM Leg</td>
<td>post 19.6±6.5</td>
<td>23.8±1.5</td>
<td>24.8±2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1RM Shoulder</td>
<td>post 28.1±5.7</td>
<td>39.3±10.3</td>
<td>31.4±6.6</td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td>0.028c</td>
</tr>
<tr>
<td>Limb Circumference (cm)</td>
<td></td>
<td></td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td>0.014<sup>c</sup></td>
</tr>
<tr>
<td>Arm</td>
<td>pre 36.7±5.2</td>
<td>31.8±3.2</td>
<td>31.0±3.1</td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
</tr>
<tr>
<td>Thigh</td>
<td>post 36.7±5.2</td>
<td>33.5±3.3</td>
<td>34.5±3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>pre 46.9±5.6</td>
<td>50.0±6.7</td>
<td>48.0±3.1</td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td><0.001<sup>c</sup></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>pre 10.3±0.9</td>
<td>9.9±1.0</td>
<td>9.8±1.2</td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
</tr>
<tr>
<td>Insulin (micIU/mL)</td>
<td></td>
<td></td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td>0.170</td>
</tr>
<tr>
<td>Irisin (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td><0.001<sup>a</sup></td>
<td><0.001<sup>b</sup></td>
<td>0.649</td>
</tr>
</tbody>
</table>

Con, Control Group; RT, Resistance Training Group; RTM, Resistance Training &Milk Group; BMI, Body Mass Index; WHR, Waist Hip Ratio; 1RM, One Repetition Maximum; FBG, Fasting Blood Glucose; HbA1c, Glycosylated Hemoglobin.

^a Significant Time Effect.
^b Significant Interaction Group×Time.
^c Significant Interaction Group×Time, Comparison Between RT&RTM Groups.

Figure 1. Fasting Blood Sugar in Three Groups. * Significant Differences to Pre test.
Results
The obtained results indicated the significant time and interaction effects on the WHR, chest, leg, and shoulder strength, arm and thigh circumference, and the levels of fasting blood glucose, HbA1c, insulin, and irisin. Despite the significant interaction effects in leg strength, and arm and thigh circumference, no significant interaction effects were observed on the diabetes indicators in the comparison of the RT and RTM groups (Table 1).

Discussion
According to the results of the present study, eight weeks of RT could improve muscle strength and circumference in the T2D patients. Furthermore, low-fat milk consumption after RT increased some of the training adaptation achievements. Despite the improvement in the GC of both training groups, the consumption of milk had no additional effects on this parameter. The previous studies conducted on overweight/obese individuals with T2D have indicated that an energy-restricted, high-protein diet combined with RT could not further improve GC compared to RT control (15). In the mentioned study, the differences in the weight and body composition changes of the subjects could be due to the restriction in the energy intake compared to our research although similar responses were observed in terms of GC. Another difference is the timing of the dietary intervention; in the mentioned research, a high-protein diet was implemented, while we used low-fat milk immediately after training. Moreover, our subjects were male only; nevertheless, the findings have proven similar in many aspects.

Consistent with the results of the present study, Francois et al. examined the effects of post-exercise milk supplementation after HIIT in T2D patients, concluding that the benefits of HIIT were not augmented with the addition of post-exercise milk consumption (16). Therefore, it could be inferred that without calorie restriction, no changes would be observed in the weight, waist circumferences or body composition.

Strong evidence suggests that dairy intake reduces insulin resistance and the risk of T2D (18, 19, 29). The comparison of the available evidence in this regard reveals that the beneficial effects of dairy consumption and exercise training on T2D are not cumulative since hypertrophy is not the only mechanism proposed to improve glucose uptake. For instance, the calcium-dependent signaling pathway and the subsequent glucose uptake are impaired in T2D (30). As a result, this pathway is reinforced by milk consumption and exercise training simultaneously (31, 32). Such similarities in the pathways of effects could also be implied for weight changes, indicating that the non-accumulative effects of milk and exercise on T2D may be associated with the similar pathways to effectiveness.

According to the literature, irisin could improve insulin resistance and T2D by increasing the insulin receptor sensitivity of the skeletal muscles and heart, which in turn enhances hepatic glucose and lipid metabolism, promoted pancreatic β cell function, and converts the white adipose tissue into the brown adipose tissue (21, 33, 34). In the present study, irisin levels increased after RT without the additional effects of milk consumption. This is consistent with the previous studies in this regard (35-37). Despite the greater increase in the muscle circumference and strength, no further increase was observed in irisin in the RTM group, and the changes in irisin were consistent with the changes in glucose, insulin, and HbA1c in the intervention groups.

Irisin is regulated by peroxisome-proliferator-activated receptor-gamma coactivator (PGC-1α) and has been suggested to increase the beneficial effects of exercise on metabolism and thermogenesis (38). On the other hand, the abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α have been reported in patients with early-onset T2D (39). Therefore, the lack of irisin change in the present study may be due to the resistance of the patients to exercise.

With regard to our findings about the further improvement in the muscle strength and circumference of the RTM group without significant differences in the other variables, Egger et al. reported that more muscle strength gains with specific maximal RT compared to endurance resistance training did not lead to further GC improvement in patients with T2D (40). In addition, evidence suggests that increased muscle mass with RT is not the only influential factor in the enhancement of muscle metabolism in T2D (41). Therefore, it could be
concluded that the difference in the muscle mass and strength gains was not sufficient to alter GC in the present study.

Limitations of the Study
Due to the limited choice of the subjects, the study was conducted with a quasi-experimental design. Another limitation was the small sample size and male-only assessments. In addition, the training continued for eight weeks only, and more prominent outcomes would be achieved by increasing the duration of training. Not recording the energy consumption and food composition of the patients was another limitation of the current research.

Conclusion
According to the results, RT with or without post-exercise milk consumption could improve GC in the T2D patients. Despite the further muscle improvement, milk intake after RT did not intensify the beneficial metabolic effects of RT on the T2D patients.

Acknowledgements
We would like to appreciate Semnan University for Grant (number 139701251006) support.

References

