The Effect of Octopamine and Aerobic Exerciseand on Genes Affecting Angiogenesis of Visceral Adipose Tissue in Rats Fed with Deep- Fried Oil

Document Type : Research Paper


1 Department of Exercise Physiology, Central Tehran Branch,Islamic Azad University, Tehran,Iran

2 Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran


Introduction: Changing today's dietary pattern has increased the share of deep-fried oils (DFO) in the daily diet. These DFO appear to have negative effects on the angiogenesis process of visceral adipose tissue. It seems that aerobic training(AT) and the intake of sympathetic mimicry herbal materials by stimulating the process of lipolysis and increasing the utilization of lipids can reduce the negative changes caused by the use of DFO.Present study aimed to review the effects of octopamine (O) and AT on VEGF and HIF-1a gene expression levels in visceral adipose tissue of rats fed with DFO. Methods: In this experimental study rats were divided into 1)HFO + O, 2) HFO + AT, 3) HFO + O + AT, 4) DFO- control and 5) healthy control groups. During 4 weeks the rats were given intra- peritoneal injection of 81 μmol/kg/dayO for 5 days per week. AT was also performed for 5 days per week with moderate intensity on the treadmill.Two- way ANOVA and independent sample t- tests were used for statistical analysis of data (P≤0.05). Results: DFO intake significantly increased visceral fat HIF-1 (P=0.001); While significantly reducedthe VEGF (P=0.021). AT significantly reducedHIF-1 (P=0.01) and increased VEGF (P=0.003). O administration also decreased HIF-1 (P=0.002) and increased VEGF (P=0.002). Osimultaneously with AThad no significant interactive effects on HIF-1 and VEGF (P≥0.05). Conclusions: It appears that O and ATcan improve the angiogenesis process of visceral adipose tissue, which was impaired by DFO and reduce the damage caused by DFO feeding.


1. Lepor NE, Fouchia DD, McCullough PA. New vistas for the treatment of obesity: turning the tide against the leading cause of morbidity and cardiovascular mortality in the developed world. Rev Cardiovasc Med. 2013;14(1):20-39; quiz 40.
2. Frayn KN, Karpe F. Regulation of human subcutaneous adipose tissue blood flow. Int J Obes (Lond). 2014;38(8):1019-26. doi:10.1038/ijo.2013.200.
3. Goossens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol (Lausanne). 2015;6:55. doi:10.3389/fendo.2015.00055. [PubMed: PMC4408910].
4. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci. 2004;82(3):925-34. doi:10.2527/2004.823925x.
5. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227-35. doi:10.1017/S0007114508971282.
6. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186-94. doi:10.1161/CIRCULATIONAHA.110.970145. [PubMed: PMC3334340].
7. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009;33(1):54-66. doi:10.1038/ijo.2008.229. [PubMed: PMC2650750].
8. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118-28. doi:10.1152/ajpendo.00435.2007.
9. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29(16):4467-83. doi:10.1128/MCB.00192-09. [PubMed: PMC2725728].
10. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901-11. doi:10.2337/db06-0911.
11. Ferri C, Desideri G, Valenti M, Bellini C, Pasin M, Santucci A, et al. Early upregulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 1999;34(4 Pt 1):568-73. doi:10.1161/01.hyp.34.4.568.
12. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718-25. doi:10.2337/db08-1098. [PubMed: PMC2646071].
13. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124(1):67-76. doi:10.1161/CIRCULATIONAHA.111.027813.
14. Elias I, Franckhauser S, Ferre T, Vila L, Tafuro S, Munoz S, et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012;61(7):1801-13. doi:10.2337/db11-0832. [PubMed: PMC3379662].
15.  Michailidou Z, Turban S, Miller E, Zou X, Schrader J, Ratcliffe PJ, et al. Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11beta-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice. J Biol Chem. 2012;287(6):4188-97. doi:10.1074/jbc.M111.259325. [PubMed: PMC3281676].
16.  Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554-61. doi:10.2337/db06-0133.
17.  Fujisaka S, Usui I, Ikutani M, Aminuddin A, Takikawa A, Tsuneyama K, et al. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1alpha-dependent and HIF-1alpha-independent manner in obese mice. Diabetologia. 2013;56(6):1403-12. doi:10.1007/s00125-013-2885-1.
18.  You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Med. 2013;43(4):243-56. doi:10.1007/s40279-013-0023-3.
19.  Enevoldsen LH, Stallknecht B, Fluckey JD, Galbo H. Effect of exercise training on in vivo lipolysis in intra-abdominal adipose tissue in rats. Am J Physiol Endocrinol Metab. 2000;279(3):E585-92. doi:10.1152/ajpendo.2000.279.3.E585.
20.  Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M. Selective activation of beta3-adrenoceptors by O: comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1999;359(4):310-21. doi:10.1007/pl00005357.
21.  Bour S, Visentin V, Prevot D, Carpene C. Moderate weight-lowering effect of O treatment in obese Zucker rats. J Physiol Biochem. 2003;59(3):175-82. doi:10.1007/bf03179913.
22.  Wang Z, Liao T, Zhou Z, Wang Y, Diao Y, Strappe P, et al. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch. Toxicol Lett. 2016;258:168-74. doi:10.1016/j.toxlet.2016.06.2101.
23.  Walton RG, Finlin BS, Mula J, Long DE, Zhu B, Fry CS, et al. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol Rep. 2015;3(6). doi:10.14814/phy2.12415. [PubMed: PMC4510621].
24. Van Pelt DW, Guth LM, Horowitz JF. Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. J Appl Physiol (1985). 2017;123(5):1150-9. doi:10.1152/japplphysiol.00614.2017. [PubMed: PMC5792100].
25.  Kawamura T, Murakami K, Bujo H, Unoki H, Jiang M, Nakayama T, et al. Matrix metalloproteinase-3 enhances the free fatty acids-induced VEGF expression in adipocytes through toll-like receptor 2. Exp Biol Med (Maywood). 2008;233(10):1213-21. doi:10.3181/0801-RM-20.
26.  Rega G, Kaun C, Demyanets S, Pfaffenberger S, Rychli K, Hohensinner PJ, et al. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arterioscler Thromb Vasc Biol. 2007;27(7):1587-95. doi:10.1161/ATVBAHA.107.143081.
27.  Czarkowska-Paczek B, Bartlomiejczyk I, Gabrys T, Przybylski J, Nowak M, Paczek L. Lack of relationship between interleukin-6 and CRP levels in healthy male athletes. Immunol Lett. 2005;99(1):136-40. doi:10.1016/j.imlet.2005.02.006.
28.  Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379-406. doi:10.1152/physrev.90100.2007.
29.  Ahn N, Kim K. Combined influence of dietary restriction and treadmill running on MCP-1 and the expression of oxidative stress-related mRNA in the adipose tissue in obese mice. J Exerc Nutrition Biochem. 2014;18(3):311-8. doi:10.5717/jenb.2014.18.3.311. [PubMed: PMC4241900].